Explain Biological Neural Network and Artificial Neural network?(ARTIFICIAL INTELLIGENCE)
Explain What is Biological Neural Network in AI? | What Do You Mean by Artificial Neural Network?
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
ANN
Artificial Neural Network (ANN) is a type of neural network which is based on a Feed-Forward strategy. It is called this because they pass information through the nodes continuously till it reaches the output node. This is also known as the simplest type of neural network.
Advantages of Artificial Neural Network (ANN)
Parallel processing capability:
Artificial neural networks have a numerical value that can perform more than one task simultaneously.
Storing data on the entire network:
Data that is used in traditional programming is stored on the whole network, not on a database. The disappearance of a couple of pieces of data in one place doesn’t prevent the network from working.
Capability to work with incomplete knowledge:
After ANN training, the information may produce output even with inadequate data. The loss of performance here relies upon the significance of missing data.
Having a memory distribution:
For ANN is to be able to adapt, it is important to determine the examples and to encourage the network according to the desired output by demonstrating these examples to the network. The succession of the network is directly proportional to the chosen instances, and if the event can’t appear to the network in all its aspects, it can produce false output.
Disadvantages of Artificial Neural Network:
Assurance of proper network structure:
There is no particular guideline for determining the structure of artificial neural networks. The appropriate network structure is accomplished through experience, trial, and error.
Unrecognized behavior of the network:
It is the most significant issue of ANN. When ANN produces a testing solution, it does not provide insight concerning why and how. It decreases trust in the network.
Hardware dependence:
Artificial neural networks need processors with parallel processing power, as per their structure. Therefore, the realization of the equipment is dependent.
Difficulty of showing the issue to the network:
ANNs can work with numerical data. Problems must be converted into numerical values before being introduced to ANN. The presentation mechanism to be resolved here will directly impact the performance of the network. It relies on the user’s abilities.
BNN
Biological Neural Network (BNN) is a structure that consists of Synapse, dendrites, cell body, and axon. In this neural network, the processing is carried out by neurons. Dendrites receive signals from other neurons, Soma sums all the incoming signals and axon transmits the signals to other cells.
Advantages of BNN :
Disadvantages of BNN :