1.
Question 1
Lambda layer allows to execute an arbitrary function only within a Sequential API model.
False
True
2.
Question 2
Which one of the following is the correct syntax for mapping an increment of 2 to the value of “x” using a Lambda layer? (tf = Tensorflow)
tf.keras.layers.Lambda(x: tf.math.add(x, 2.0))
tf.keras.layers.Lambda(lambda x: tf.math.add(x, 2.0))
tf.keras.Lambda(x: tf.math.add(x, 2.0))
tf.keras.layers(lambda x: tf.math.add(x, 2.0))
3.
Question 3
One drawback of Lambda layers is that you cannot call a custom built function from within them.
True
False
4.
Question 4
A Layer is defined by having “States” and “Computation”. Consider the following code and check all that are true:
def call(self, inputs): performs the computation and is called when the Class is instantiated.
You use def build(self, input_shape): to create the state of the layers and specify local input states.
After training, this class will return a w*X + b computation, where X is the input, w is the weight/kernel tensor with trained values, and b is the bias tensor with trained values.
In def __init__(self, units=32): you use the super keyword to initialize all of the custom layer attributes
5.
Question 5
Consider the following code snippet.
What are the function modifications that are needed for passing an activation function to this custom layer implementation?
a>def build(self, input_shape):
.
.
self.activation = tf.keras.activations.get(activation)
def call(self, inputs):
return self.activation(tf.matmul(inputs, self.w) + self.b)
b>def build(self, units=32, activation=None):
.
.
self.activation = activation
def call(self, inputs):
return self.activation(tf.matmul(inputs, self.w) + self.b)
c>def __init__(self, units=32):
.
.
self.activation = tf.keras.activations.get(activation)
def call(self, inputs):
return self.activation(tf.matmul(inputs, self.w) + self.b)
d>def __init__(self, units=32, activation=None):
.
.
self.activation = tf.keras.activations.get(activation)
def call(self, inputs):
return self.activation(tf.matmul(inputs, self.w) + self.b)
1.
Question 1
Lambda layer allows to execute an arbitrary function only within a Sequential API model.
False
True
Answer: False
2.
Question 2
Which one of the following is the correct syntax for mapping an increment of 2 to the value of “x” using a Lambda layer? (tf = Tensorflow)
tf.keras.layers.Lambda(x: tf.math.add(x, 2.0))
tf.keras.layers.Lambda(lambda x: tf.math.add(x, 2.0))
tf.keras.Lambda(x: tf.math.add(x, 2.0))
tf.keras.layers(lambda x: tf.math.add(x, 2.0))
Answer: tf.keras.layers.Lambda(lambda x: tf.math.add(x, 2.0))
3.
Question 3
One drawback of Lambda layers is that you cannot call a custom built function from within them.
True
False
Answer: False
4.
Question 4
A Layer is defined by having “States” and “Computation”. Consider the following code and check all that are true:
def call(self, inputs): performs the computation and is called when the Class is instantiated.
You use def build(self, input_shape): to create the state of the layers and specify local input states.
In def __init__(self, units=32): you use the super keyword to initialize all of the custom layer attributes
Answer: You use def build(self, input_shape): to create the state of the layers and specify local input states.
5.
Question 5
Consider the following code snippet.
What are the function modifications that are needed for passing an activation function to this custom layer implementation?
Answer:
def __init__(self, units=32, activation=None):
.
.
self.activation = tf.keras.activations.get(activation)
def call(self, inputs):
return self.activation(tf.matmul(inputs, self.w) + self.b)