

Maximize $\quad Z=15 x_{1}+30 x_{2}+4 x_{1} x_{2}-2 x_{1}{ }^{2}-4 x_{2}{ }^{2}$
Subject to $\quad \mathbf{x}_{1}+2 \mathrm{x}_{2} \leq 30$,
$\mathbf{x}_{1}, \mathbf{x}_{2} \geq \mathbf{0}$
solution:
standard notation and representation :
maximize $C x-1 / 2 x^{\top} Q x$
subject to $A x \leq b$
$x \geq 0$
converting whole expression in standard notation and representation:
=>
To put the constraints in our standard form of $A x \leq b$ we have
$A=[1,2]$
$x=|x 1|$
| x2
$b=[30]$
$\Rightarrow A x<=b$
\Rightarrow So, $[1,2]|x 1| \leq[30]$
| x2

To put the objective
$15 \times 1+30 \times 2+4 \times 1 \times 2-2(\times 1)^{2}-4(x 2)^{2}$
in our standard form of $\mathrm{Cx}-1 / 2 \mathrm{x}$ T Qx we have:
$c=[15,30]$
$Q=|4-4|$
| -4 8 |

Here to get Q we double the coefficients on the nonlinear terms and change the signs (note the $-1 / 2$ in $-1 / 2 x$ T Qx).

$$
\begin{aligned}
& x^{\mathrm{T}} Q x=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]\left|\begin{array}{cc}
4 & -4 \\
\left.\left|\begin{array}{cc}
-4 & 8
\end{array}\right| \right\rvert\, \mathrm{x}_{1}
\end{array}\right| \\
& =\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \quad\left|\begin{array}{l}
4 \mathrm{x}_{1}-4 \mathrm{x}_{2} \\
\mid-4 \mathrm{x}_{1}+8 \mathrm{x}_{2}
\end{array}\right| \\
& =4\left(\mathrm{x}_{1}\right)^{2}-4 \mathrm{x}_{1} x_{2}-4 \mathrm{x}_{1} \mathrm{x}_{2}+8\left(\mathrm{x}_{2}\right)^{2} \\
& =4\left(\mathrm{x}_{1}\right)^{2}-8 \mathrm{x}_{1} \mathrm{x}_{2}+8\left(\mathrm{x}_{2}\right)^{2}
\end{aligned}
$$

so $c x-1 / 2 x^{\mathrm{T}} Q x=$

$$
\begin{aligned}
& {[15,30] \quad\left|x_{1}\right|-1 / 2\left(4\left(x_{1}\right)^{2}-8 x_{1} x_{2}+8\left(x_{2}\right)^{2}\right)} \\
& \quad\left|x_{2}\right| \\
& =15 x_{1}+30 x_{2}-1 / 2\left(4\left(x_{1}\right)^{2}-8 x_{1} x_{2}+8\left(x_{2}\right)^{2}\right) \\
& =15 x_{1}+30 x_{2}+4 x_{1} x_{2}-2\left(x_{1}\right)^{2}-4\left(x_{2}\right)^{2}
\end{aligned}
$$

as required So we have the problem expressed in standard form, where note that Q is symmetric.

For our QP we have
$\mathrm{f}=15 \mathrm{x}_{1}+30 \mathrm{x}_{2}+4 \mathrm{x}_{1} \mathrm{x}_{2}-2\left(\mathrm{x}_{1}\right)^{2}-4\left(\mathrm{x}_{2}\right)^{2}$
with just one constraint (so $\mathrm{m}=1$), namely
$\mathrm{g}_{1}=\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq \mathrm{b}_{1}=30$
$\partial \mathrm{f} / \partial \mathrm{x}_{\mathrm{j}}-\sum_{\mathrm{i}=1}^{m} \mathrm{u}_{\mathrm{i}}\left(\partial \mathrm{g}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}}\right) \leq 0$ at $\mathrm{x}_{\mathrm{j}}=\mathrm{X}_{\mathrm{j}} \forall \mathrm{j}$
becomes
for $\mathrm{j}=1 \quad 15+4 \mathrm{X}_{2}-4 \mathrm{X}_{1}-\mathrm{u}_{1} \leq 0$
for $\mathrm{j}=2 \quad 30+4 \mathrm{X}_{1}-8 \mathrm{X}_{2}-2 \mathrm{u}_{1} \leq 0$
$\mathrm{X}_{\mathrm{j}}\left[\partial \mathrm{f} / \partial \mathrm{x}_{\mathrm{j}}-\sum_{i=1}^{\pi} \mathrm{u}_{\mathrm{i}}\left(\partial \mathrm{g}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}}\right)\right]=0$ at $\mathrm{x}_{\mathrm{j}}=\mathrm{X}_{\mathrm{j}} \forall \mathrm{j}$
becomes
for $\mathrm{j}=1 \quad \mathrm{X}_{1}\left[15+4 \mathrm{X}_{2}-4 \mathrm{X}_{1}-\mathrm{u}_{1}\right]=0$
for $\mathrm{j}=2 \quad \mathrm{X}_{2}\left[30+4 \mathrm{X}_{1}-8 \mathrm{X}_{2}-2 \mathrm{u}_{1}\right]=0$
$\mathrm{g}_{\mathrm{i}}(X)-\mathrm{b}_{\mathrm{i}} \leq 0 \forall \mathrm{i}$ becomes $\mathrm{X}_{1}+2 \mathrm{X}_{2}-30 \leq 0$
$\mathrm{u}_{\mathrm{i}}\left[\mathrm{g}_{\mathrm{i}}(X)-\mathrm{b}_{\mathrm{i}}\right]=0 \forall \mathrm{i}$ becomes $\mathrm{u}_{1}\left(\mathrm{X}_{1}+2 \mathrm{X}_{2}-30\right)=0$
where $X_{1}, X_{2}, u_{1} \geq 0$
$4 \mathrm{X}_{2}-4 \mathrm{X}_{1}-\mathrm{u}_{1}+\mathrm{y}_{1}=-15$
$4 \mathrm{X}_{1}-8 \mathrm{X}_{2}-2 \mathrm{u}_{1}+\mathrm{y}_{2}=-30$
$\mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{v}_{1}=30$
Now consider the three constraints that require a product to be zero, these are

$$
\begin{aligned}
& \mathrm{X}_{1}\left[15+4 \mathrm{X}_{2}-4 \mathrm{X}_{1}-\mathrm{u}_{1}\right]=0 \\
& \mathrm{X}_{2}\left[30+4 \mathrm{X}_{1}-8 \mathrm{X}_{2}-2 \mathrm{u}_{1}\right]=0 \\
& \mathrm{u}_{1}\left(\mathrm{X}_{1}+2 \mathrm{X}_{2}-30\right)=0
\end{aligned}
$$

which using the above becomes

$$
\begin{aligned}
& \mathrm{X}_{1}\left[-\mathrm{y}_{1}\right]=0 \\
& \mathrm{X}_{2}\left[-\mathrm{y}_{2}\right]=0 \\
& \mathrm{u}_{1}\left(-\mathrm{v}_{1}\right)=0
\end{aligned}
$$

The initial simplex tableau is:

Basis	X_{1}	X_{2}	u_{1}	y_{1}	y_{2}	v_{1}	z_{1}	z_{2}	RHS
z_{1}	4	-4	1	-1			1		15
z_{2}	-4	8	2		-1			1	30
v_{1}	1	2				1			30
Obj		-4	-3	1	1				-45

Summarising, the pivot row is the z_{2} row; the pivot element is 8 ; the pivot column is the X_{2} column.

The new simplex tableau is

Basis	X_{1}	X_{2}	u_{1}	y_{1}	y_{2}	v_{1}	z_{1}	z_{2}	RHS
z_{1}	2		2	-1	-0.5		1	0.5	30
X_{2}	-0.5	1	0.25		-0.125			0.125	3.75
v_{1}	2		-0.5		0.25	1		-0.25	22.5
Obj	-2		-2	1	0.5			0.5	-30

Doing the pivot operation we get (to 3 decimal places)

Basis	X_{1}	X_{2}	u_{1}	y_{1}	y_{2}	v_{1}	z_{1}	z_{2}	RHS
Z_{1}			2.5	-1	-0.75	-1	1	0.75	7.5
X_{2}		1	0.125		-0.063	0.25		0.063	9.375
X_{1}	1		-0.25		0.125	0.5		-0.125	11.25
Obj			-2.5	1	0.75	1		0.25	-7.5

Doing the pivot operation we get (to 3 decimal places)

Basis	X_{1}	X_{2}	u_{1}	y_{1}	y_{2}	v_{1}	z_{1}	z_{2}	RHS
u_{1}			1	-0.4	-0.3	-0.4	0.4	0.3	3
X_{2}		1		0.05	-0.025	0.3	-0.05	0.025	9
X_{1}	1			-0.1	0.05	0.4	0.1	-0.05	12
Obj							1	1	0

Here we are done, as the objective has value zero. Hence we have a solution $u_{1}=3$, $X_{2}=9$ and $X_{1}=12$, all other variables zero.

It is easy to confirm that this solution satisfies:

$$
\begin{aligned}
& -4 X_{2}+4 X_{1}+u_{1}-y_{1}+z_{1}=15 \\
& -4 X_{1}+8 X_{2}+2 u_{1}-y_{2}+z_{2}=30 \\
& X_{1}+2 X_{2}+v_{1}=30 \\
& X_{1} y_{1}+X_{2} y_{2}+u_{1} v_{1}=0 \\
& \text { all variables } \geq 0
\end{aligned}
$$

As we have a solution satisfying our KKT constraints this must be the optimal solution to our original QP maximise

$$
15 x_{1}+30 x_{2}+4 x_{1} x_{2}-2\left(x_{1}\right)^{2}-4\left(x_{2}\right)^{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 30 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

i.e. the optimal solution to this problem is $x_{1}=12$ and $x_{2}=9$, for which the associated objective function value is 270 .

