$\mathrm{Q} / /$ The heights of persons with No. of persons is given , Heights (in Cm): 58, 59, 60, 61, $62,63,64,65$ and No. of persons : 10, 18, 30, 42,35, 28, 16, 8.

Find Karl Pearson's coefficient of correlation.

X	Y	$\mathrm{X}-\mathrm{M}_{\mathrm{x}}$	$\left(\mathrm{X}-\mathrm{M}_{\mathrm{x}}\right)^{2}$	$\left(\mathrm{Y}-\mathrm{M}_{\mathrm{y}}\right)$	$\left(\mathrm{Y}-\mathrm{M}_{\mathrm{y}}\right)^{2}$	$\left(\mathrm{X}-\mathrm{M}_{\mathrm{x}}\right)(\mathrm{Y}-$ $\left.\mathrm{M}_{\mathrm{y}}\right)$
58	10	-3.5	12.25	-13.375	178.891	46.812
59	18	-2.5	6.25	-5.375	28.891	13.438
60	30	-1.5	2.25	6.625	43.891	-9.938
61	42	-0.5	0.25	18.625	346.891	-9.312
62	35	0.5	0.25	11.625	135.141	5.812
63	28	1.5	2.25	4.625	21.391	6.938
64	8	2.5	-7.375	54.391	-18.438	
65	Sum $=187$		12.25	-15.375	236.391	-53.812
Sum $=492$		Sum $=42$		Sum $=1045.875$	Sum=-18.5	

Where :
X : X Values
Y : Y Values
M_{x} : Mean of X Values
M_{y} : Mean of Y Values
$X-M_{\mathrm{x}} \& Y-M_{y}$: Deviation scores
$\left(X-M_{x}\right)^{2} \&\left(Y-M_{y}\right)^{2}$: Deviation Squared
$\left(X-M_{x}\right)\left(Y-M_{y}\right)$: Product of Deviation Scores

\underline{X} Values

$\sum X_{i}=492$
Mean $=\sum X_{i} / X_{i}=492 / 7=61.5$
$\sum(X-M x) 2=S S x=42$

\underline{Y} Values

$\sum Y_{i}=187$
Mean $=23.375$
$\Sigma(\mathrm{Y}-\mathrm{My}) 2=\mathrm{SSy}=1045.875$
$\mathrm{r}=\Sigma \mathrm{xy} / \sqrt{ } \Sigma \mathrm{x}^{2} \times \sqrt{ } \Sigma \mathrm{y}^{2}$
$r=-18.5 / V((42)(1045.875))=-0.0883$

Thus, the value of correlation coefficient is $\mathbf{- 0 . 0 8 8 3}$.

