Sikshapath

Q1) Find the curve of second degree of regression of y on x () to the following data by method of least square :

X	1	2	3	4
y	6	11	18	27

Sol:

х	1	2	3	4	
y	6	11	18	27	

Sol. We form the following table:

x	у	x^2	x^3	x ⁴	ху	x^2y
1	6	1	1	1	6	6
2	11	4	8	16	22	44
3	18	9	27	81	54	162
4	27	16	64	256	108	432
$\Sigma x = 10$	$\Sigma y = 62$	$\Sigma x^2 = 30$	$\Sigma x^3 = 100$	$\Sigma x^4 = 354$	$\Sigma xy = 190$	$\Sigma x^2 y = 644$

The equation of second degree parabola is given by

$$y = a + bx + cx^2 \qquad \dots (1)$$

And the normal equations are

$$\Sigma y = an + b\Sigma x + c\Sigma x^2 \qquad ...(2)$$

$$\sum xy = a\sum x + b\sum x^2 + c\sum x^3 \qquad ...(3)$$

$$\sum x^2 y = a \sum x^2 + b \sum x^3 + c \sum x^4 \qquad \dots (4)$$

$$\Rightarrow 4a + 10b + 30c = 62
10a + 30b + 100c = 190
30a + 100b + 354c = 644
\Rightarrow a = 3, b = 2, c = 1$$

Hence $y = 3 + 2x + x^2$. **Ans.**