Fit the curve of the form $y = ab^{x}$ for

x	2	3	4	5	6	
у	8.3	15.4	33.1	65.2	126.4	

Solution:

The curve to be fitted is $y = ab^x$

taking logarithm on both sides, we get $\log_{10}(y) = \log_{10}(a) + x \log_{10}(b)$

Y = A + Bx where $Y = \log_{10}(y), A = \log_{10}(a), B = \log_{10}(b)$

which linear in Y,x So the corresponding normal equations are $\sum Y = nA + B \sum x$

$$\sum xY = A\sum x + B\sum x^2$$

x	у	$Y = \log_{10}(y)$	x ²	$x \cdot Y$
2	8.3	0.9191	4	1.8382
3	15.4	1.1875	9	3.5626
4	33.1	1.5198	16	6.0793
5	65.2	1.8142	25	9.0712
6	126.4	2.1017	36	12.6105
$\sum x = 20$	$\sum y = 248.4$	$\sum Y = 7.5424$	$\sum x^2 = 90$	$\sum x \cdot Y = 33.1618$

The values are calculated using the following table

Substituting these values in the normal equations 5A + 20B = 7.5424

20A + 90B = 33.1618

Solving these two equations using Elimination method,

5a + 20b = 7.5424and 20a + 90b = 33.1618 $\therefore 20a + 90b = 33.16$ $5a + 20b = 7.5424 \rightarrow (1)$ $20a + 90b = 33.1618 \rightarrow (2)$ equation(1) \times 4 \Rightarrow 20a + 80b = 30.1696 equation(2) \times 1 \Rightarrow 20a + 90b = 33.1618 Substracting \Rightarrow - 10b = - 2.9922 $\Rightarrow 10b = 2.9922$ $\Rightarrow b = \frac{2.9922}{10}$ $\Rightarrow b = 0.29922$ Putting b = 0.29922 in equation (1), we have 5a + 20(0.29922) = 7.5424 $\Rightarrow 5a = 7.5424 - 5.9844$ $\Rightarrow 5a = 1.558$ $\Rightarrow \alpha = \frac{1.558}{5}$ $\Rightarrow a = 0.3116$ a = 0.3116 and b = 0.29922

we obtain A = 0.3116, B = 0.2992

 $a = antilog_{10}(A) = antilog_{10}(0.3116) = 2.0493$

and $b = antilog_{10}(B) = antilog_{10}(0.2992) = 1.9917$

Now substituting this values in the equation is $y = ab^x$, we get

 $y = 2.0493 \cdot (1.9917)^x$