Fit the curve of the form $y=a b^{x}$ for

x	2	3	4	5	6
y	8.3	15.4	33.1	65.2	126.4

Solution:

The curve to be fitted is $y=a b^{x}$
taking logarithm on both sides, we get
$\log _{10}(v)=\log _{10}(a)+x \log _{10}(b)$
$Y=A+B x$ where $Y=\log _{10}(y), A=\log _{10}(a), B=\log _{10}(b)$
which linear in Y, X
So the corresponding normal equations are
$\sum Y=n A+B \sum x$
$\sum x Y=A \sum x+B \sum x^{2}$

The values are calculated using the following table
The values are calculated using the following table

x	y	$Y=\log _{10}(y)$	x^{2}	$x \cdot Y$
2	8.3	0.9191	4	1.8382
3	15.4	1.1875	9	3.5626
4	33.1	1.5198	16	6.0793
5	65.2	1.8142	25	9.0712
6	126.4	---	--	36
-----	$\sum x^{2}=90$	$\sum .6105$		
$\sum x=20$	$\sum y=248.4$	$\sum Y=7.5424$	--	

Substituting these values in the normal equations
$5 A+20 B=7.5424$
$20 A+90 B=33.1618$

Solving these two equations using Elimination method,
$5 a+20 b=7.5424$
and $20 a+90 b=33.1618$
$\therefore 20 a+90 b=33.16$
$5 a+20 b=7.5424 \rightarrow$ (1)
$20 a+90 b=33.1618 \rightarrow(2)$
equation $(1) \times 4 \Rightarrow 20 a+80 b=30.1696$
equation(2) $\times 1 \Rightarrow 20 a+90 b=33.1618$
Substracting $\Rightarrow-10 b=-2.9922$
$\Rightarrow 10 b=2.9922$
$\Rightarrow b=\frac{2.9922}{10}$
$\Rightarrow b=0.29922$
Putting $b=0.29922$ in equation (1), we have
$5 a+20(0.29922)=7.5424$
$\Rightarrow 5 a=7.5424-5.9844$
$\Rightarrow 5 a=1.558$
$\Rightarrow a=\frac{1.558}{5}$
$\Rightarrow a=0.3116$
$\therefore a=0.3116$ and $b=0.29922$
we obtain $A=0.3116, B=0.2992$
$\therefore a=\operatorname{antilog}_{10}(A)=\operatorname{antilog}_{10}(0.3116)=2.0493$
and $b=\operatorname{antilog}_{10}(B)=\operatorname{antilog}_{10}(0.2992)=1.9917$

Now substituting this values in the equation is $y=a b^{x}$, we get
$y=2.0493 \cdot(1.9917)^{x}$

